De elastische kracht is de kracht die een object uitoefent om een verandering in zijn vorm te weerstaan. Het manifesteert zich in een object dat de neiging heeft om zijn vorm terug te krijgen wanneer het onder invloed is van een vervormingskracht.
De elastische kracht wordt ook wel de herstellende kracht genoemd omdat het vervorming tegengaat om objecten terug te brengen naar hun evenwichtspositie. De overdracht van de elastische kracht vindt plaats via de deeltjes waaruit de objecten bestaan.
Wanneer een metalen veer bijvoorbeeld wordt samengedrukt, wordt een kracht uitgeoefend die de veerdeeltjes duwt, waardoor de scheiding tussen hen wordt verkleind, terwijl de deeltjes tegelijkertijd weerstand bieden aan het duwen door een kracht uit te oefenen die in strijd is met de compressie..
Als in plaats van de veer samen te drukken, eraan wordt getrokken, worden de deeltjes waaruit het bestaat verder gescheiden. Evenzo weerstaan de deeltjes gescheiden worden door een kracht uit te oefenen die in strijd is met strekken..
Objecten die de eigenschap hebben hun oorspronkelijke vorm terug te krijgen bij het weerstaan van de vervormingskracht, worden elastische objecten genoemd. Veren, elastiekjes en bungeekoorden zijn voorbeelden van elastische voorwerpen..
Artikel index
De elastische kracht (F.k) is de kracht die een object uitoefent om zijn natuurlijke balans terug te krijgen nadat het is beïnvloed door een externe kracht.
Om de elastische kracht te analyseren, wordt rekening gehouden met het ideale veermassasysteem, dat bestaat uit een horizontaal geplaatste veer die aan het ene uiteinde aan de muur is bevestigd en aan het andere uiteinde aan een blok met verwaarloosbare massa. Er wordt geen rekening gehouden met de overige krachten die op het systeem inwerken, zoals de wrijvingskracht of de zwaartekracht..
Als een horizontale kracht wordt uitgeoefend op de massa, gericht naar de muur, wordt deze overgebracht naar de veer en wordt deze samengedrukt. De veer beweegt van zijn evenwichtspositie naar een nieuwe positie. Omdat het object de neiging heeft om in evenwicht te blijven, manifesteert de elastische kracht in de veer die de uitgeoefende kracht tegenwerkt zich.
De verplaatsing geeft aan hoeveel de veer is vervormd en de elastische kracht is evenredig met die verplaatsing. Naarmate de veer wordt samengedrukt, neemt de variatie in positie toe en bijgevolg neemt de elastische kracht toe..
Hoe meer de veer wordt samengedrukt, hoe meer tegenkracht hij uitoefent totdat hij een punt bereikt waarop de uitgeoefende kracht en de elastische kracht in evenwicht zijn, en bijgevolg stopt het veer-massasysteem met bewegen. Wanneer u stopt met het uitoefenen van kracht, is de enige kracht die werkt de elastische kracht. Deze kracht versnelt de veer in de richting die tegengesteld is aan de vervorming, totdat deze weer in evenwicht is.
Hetzelfde gebeurt wanneer de veer wordt uitgerekt en de massa horizontaal wordt getrokken. De veer wordt uitgerekt en oefent onmiddellijk een kracht uit die evenredig is met de verplaatsing die de rek tegenwerkt.
De formule van de elastische kracht wordt uitgedrukt door de wet van Hooke. Deze wet stelt dat de lineaire elastische kracht die door een object wordt uitgeoefend, evenredig is met de verplaatsing.
F.k = -k.Δs [1]
F.k Elastische kracht
k = Constante van evenredigheid
Δs = Verplaatsing
Wanneer het object horizontaal wordt verplaatst, zoals in het geval van de veer die aan de muur is bevestigd, is de verplaatsing dat wel ΔX, en de uitdrukking van de wet van Hooke is geschreven:
F.k = -k.ΔX [twee]
Het minteken in de vergelijking geeft aan dat de elastische kracht van de veer tegengesteld is aan de kracht die de verplaatsing veroorzaakte. De constante van evenredigheid k is een constante die afhangt van het soort materiaal waarvan de veer is gemaakt. De eenheid van de constante k het is N / m.
Elastische objecten hebben een elasticiteitslimiet die afhangt van de vervormingsconstante. Als het wordt uitgerekt tot voorbij de elastische limiet, zal het permanent vervormen.
Vergelijkingen [1] en [2] zijn van toepassing op kleine verplaatsingen van de veer. Wanneer de verplaatsingen groter zijn, termen met een groter vermogen van ΔX.
De elastische kracht werkt op de veer door deze naar zijn evenwichtspositie te bewegen. Tijdens dit proces neemt de potentiële energie van het veermassasysteem toe. De potentiële energie als gevolg van het werk van de elastische kracht wordt uitgedrukt in vergelijking [3].
U = ½ k . Axtwee[3]
Potentiële energie wordt uitgedrukt in Joules (J).
Wanneer de vervormingskracht niet meer wordt uitgeoefend, versnelt de veer naar de evenwichtspositie, waardoor de potentiële energie afneemt en de kinetische energie toeneemt..
De kinetische energie van het massa-veer-systeem, wanneer het de evenwichtspositie bereikt, wordt bepaald door vergelijking [4].
ENk= ½ m.vtwee[4]
m = massa
v = veersnelheid
Om het massa-veer-systeem op te lossen, wordt de tweede wet van Newton toegepast, rekening houdend met het feit dat de elastische kracht een variabele kracht is.
Hoeveel kracht moet er op een veer worden uitgeoefend om deze 5 cm uit te rekken als de veerconstante 35 N / m is?
Omdat de uitgeoefende kracht tegengesteld is aan de elastische kracht, wordt deze bepaald F.k ervan uitgaande dat de veer horizontaal is uitgerekt. Voor het resultaat is het minteken niet vereist, aangezien alleen de aandrukkracht nodig is.
Hooke's wet
F.k = -k.Δx
De constante k lente is 35N / m.
Δx = 5 cm = 0,05 m
F.k = -35N / m. 0,05 m
F.k = - 1,75 N = - F
Nodig zijn 1,75 N kracht om de veer te vervormen 5 cm.
Wat is de rekconstante van een veer die wordt uitgerekt? 20 cm door de werking van een kracht van 60N?
Ax 20 cm = 0.2 m
F. = 60N
F.k = -60N = - F
k = - Fk / Δx
= - (- 60N) / 0.2m
k = 300 N / m
De veerconstante is 300N / m
Wat is de potentiële energie die verwijst naar het werk dat wordt gedaan door de elastische kracht van een samendrukkende veer? 10cm en zijn rekconstante is 20N / m?
ΔX 10 cm = 0,1 m
k = 20 N / m
F.k = -20N / m. 0,1 m
F.k = -200N
De elastische kracht van de veer is -200N.
Deze kracht werkt op de veer om deze naar zijn evenwichtspositie te verplaatsen. Door dit werk te doen, wordt de potentiële energie van het systeem verhoogd.
De potentiële energie wordt berekend met de vergelijking [3]
U = ½ k . Axtwee
U = ½ (20N / m). (0,1 m)twee
U = 0,1 joule
Niemand heeft nog op dit artikel gereageerd.